Designed for use on all XpressNet systems

Digital plus
by Lenz®

LH100 Keypad based Dispatcher's Throttle
Version 3.6
art. no. 21100
June 2008
Welcome!

Congratulations for purchasing the **Digital plus by Lenz®** hand held controller LH100. We wish you much enjoyment with using this model train control system.

The LH100 hand held controller is the universal data input device in the **Digital plus by Lenz®** system. With it you can:

- operate your locomotives and ability to operate functions F0 to F28 if decoder supported
- assemble, operate, and disassemble locomotives operated as double headers
- use smart-consisting to assemble, operate, and disassemble multi-unit consists.
- throw turnouts and set signals or activate uncoupling tracks
- read out system configurations and redefine them
- read out information from feedback encoders and feedback capable accessory decoders
- program locomotive and accessory decoders as well as feedback devices

This operation manual is intended to make using the LH100 easy for you. To get started, first read the section "First Steps". After you have understood the basic locomotive control, you can familiarize yourself with the full range of features of the LH100 and put them to use.

If you should have any questions that are still unanswered after you work your way through this information, then we will be glad to help you further. You can contact us in the following ways:

<table>
<thead>
<tr>
<th></th>
<th>Europe</th>
<th>North America</th>
</tr>
</thead>
</table>
| Postal address: | Lenz Elektronik GmbH
Huettenbergstrasse 29
D-35398 Giessen | Lenz Agency
PO Box 143
Chelmsford, MA 01824 |
| Phone | ++49 (0) 6403 900 133 | ++1 978 250 1494 |
| Fax | ++49 (0) 6403 900 155 | ++1 978 455 LENZ |
| Email | info@digital-plus.de | support@lenz.com |

Do you have everything?

Please check if everything is included in the box:
- Hand held controller LH100
- Operation manual (this booklet)

If an item is missing, please contact your retailer to have the missing item replaced. The manual is also, on-line for downloading.
1 **Important information — Please read first!**

Your LH100 hand held controller is a component of the *Digital plus by Lenz*™ system and was subjected to intense testing before shipping. Lenz Elektronik GmbH guarantees problem free operation when you follow these directions:

Depending on which command station (and which software version) you operate your LH100 on, certain functions are not or are only partially available. This manual contains all the possible LH100 capabilities present when used with an LZ100 V3.6. The LH100 capabilities may be reduced by the capabilities provided by that system. For details check out the system manual of the system you desire to use your LH100 on. If using your LH100 on a Version 3.5 or older system please refer to the LH100 version V3.0 manual.

"F" on second line of display means LZ V3.5 or older
"I" on the top line of the display mean version 3.6 or later

The LH100 must only be used with systems that have been branded to support XpressNet or the older X-Bus protocols. A branded system will display the XpressNet logo. Any other use than the one described in this operation manual is not allowed and will lead to voiding of the warranty.

Even when other devices (including ones from other manufacturers) have the same connectors, you may not operate the LH100 with these devices unless they display the XpressNet logo. Other systems may use the same connectors but have different internal wiring that can harm the LH100.

Do not expose the LH100 to moisture or extended direct sunlight.

If you have problems, please first check this operation manual to see if you may have missed a direction for use. The table of contents and especially the section “Troubleshooting” will help you here.

LH100 Configured with German Display
LH100 Configured with English Display

In order to change the display language please refer to section “Language Selection” starting on page 62.
1.1 Method for describing commands within this manual:

This manual is written with the assumption that the LH100 is configured for the English language display. You can configure the LH100 for either English or German display. See section 13.2.2 for a description on how to configure the language of your LH100.

Showing step-by-step directions:

The entries that you must make using the LH100 keys are shown on the left. In the middle you will see what is shown on the display after the keystroke. To the right a brief explanation is provided.

All the described steps assume that the hand held controller is connected to a Version 3.6 Digital plus by Lenz® system, and that this system is turned on.

Showing displays and keys in text:

"E 0001" ‘Enter’

In most cases the display of LH100 is shown as a picture, as are the keys. If the main text makes reference to displays, then it is put in double quotes. Keys referred to in the text are shown with single quotes.

Cross references:

(⇒ p. 23)

This arrow points you to a particular page in this operation manual, where you will find additional information about the subject at hand.

Important notes:

Text marked with this symbol and frame contains especially important information and tips.
1.2 Understanding the LH100 ‘Key’ definitions
Understanding the basic key definition provides the best use of the LH100’s intuitive operation. The following four keys provide the backbone of the LH100’s operator’s interaction.

- **CL** key, is used to CLEAR the whole display or back out digit by digit to clear a mistake when entering data.
- **Esc** key escapes out of the current display or operation. Multiple pushes escapes back to locomotive control. It is also used to scroll through the LH100’s 12 address stack.
- **Enter** key confirms or selects choices in programming, operation, etc. It passes the operator’s selection from the throttle to the LZV. During locomotive speed step display, “ESC” is used to show the current operating address.
- **F** key is our menu key. And it is the start of all menu shortcuts. Example, “F” 5, leads to turnout menu. Or the menus can be scrolled using multiple presses of the ‘F’ key.

1.3 Overview of new and updated features in version 3.6
- New stack for quick change between up to 12 locomotive addresses with the ‘Esc’ key. The size of this stack can be configured to be from 1 to 12 entries.
- Functions F0 to F28 can now be controlled.
- Functions F1 to F28 can be set to momentary or continuous operation per locomotive address. Factory default has functions operating in continuous operation.
- Selections of which function information is to be refreshed by the command station even between operating sessions is now available. The factory default is functions F0 to F8 are refreshed.
- Full support for all 1024 CVs in both service mode and in operational mode (PoM).
- Speed enhanced increasing and decreasing of CV values during programming: Ideal, for example, for setting the maximum speed of a locomotive.
- Speed enhanced changing to the next or previous CV during programming.
- Reading of CVs via PoM with the RailCom address display LRC120.
2 Contents

1 Important information — Please read first! 3
 1.1 Method for describing commands within this manual: 4
 1.2 Understanding the LH100 'Key' definitions 5
 1.3 Overview of new and updated features in version 3.6 5

2 Contents 6

3 First steps for connections the LZV and operating your first train. 7
 3.1 Connections and starting operation 7
 3.2 Operating Your first Train 8

4 Overview of the features of the LH100 11
 4.1 The LH100 LCD Display 11

5 Controlling locomotives with the LH100 12
 5.1 Changing locomotive speed and direction 12
 5.2 Entering a new locomotive address on the LH100 keypad 13
 5.3 Selecting an address from the command station stack 13
 5.4 Taking over control of a locomotive from another hand held controller 15
 5.5 Controlling locomotive functions 16
 5.6 Changing function groups 17
 5.7 Emergency stop and emergency off 18

6 The function menu of LH100 20
 6.1 Setting locomotive decoder features, F1 20
 6.2 Double header, F2 21
 6.3 Multi-Unit Consist (MU), F3 21
 6.4 Throwing turnouts and setting signals, F5 21
 6.5 Display feedback information, F6 22
 6.6 Configuring decoder settings: Programming, F8 22
 6.7 System settings, F9 23

7 Setting locomotive decoder features – F1 23
 7.1 Configuring locomotive decoder functions 24
 7.2 'Refreshing' functions 25
 7.3 Displaying/ changing the speed-step mode 26

8 Double header - F2 28
 8.1 Prerequisites for creating a double header 28
 8.2 Configuring two locomotives as a double header: 28
 8.3 Combining locomotives with different speed step numbers into a double header 30
 8.4 Error messages when assembling a double header 30
 8.5 Disassembling a double header 30

9 Multi-unit consists (MU) – F3 31
 9.1 What is a multi-unit consist? 31
 9.2 Prerequisites for a multi-unit consist: 32
 9.3 Assembling a multi-unit consist (MU) 32
 9.4 Controlling a multi-unit consist 34
 9.5 Displaying the members of a MU and switching between locomotives in a MU 34
 9.6 Removing a locomotive from a MU 35
 9.7 Erasing a complete MU 36
 9.8 Error messages in multi-unit consists 36
3 First steps for connections the LZV and operating your first train.

3.1 Connections and starting operation
The LH100 can be connected to any XpressNet system including the following components of the Digital plus by Lenz system: LZV100; LZ100
It may also be used with other XpressNet systems including the Atlas Commander and the Roco Lokmaus 2 system.

As with all XpressNet devices, you can disconnect your LH100 during operation and reconnect it later when you wish. To make the maximum use of this advantage of XpressNet, install several connector plates LA152/LA153 or install 5 pin din plugs around your layout. You will then always be able to use the LH100 right at the desired place of action.
3.1.1 Connecting to command station LZ/LZV100

Insert the LH100’s 5-pin DIN-connector
- in the 5-pin DIN-jack on the back of your LZV100 or LZ100
or, if you have already installed XpressNet wiring on your layout
- into a connector panel LA152, or 5 pin DIN plug

3.1.2 Setting the XpressNet Address

All input devices connected to XpressNet must have their own unique device address for the information exchange to function correctly. Therefore you must make sure that each connected device has its own unique address. Up to 31 devices can be connected to XpressNet, but each must have a unique address.

Each hand held controller LH100 has its factory default address set to address 01. If you already have an LH100 at this address or operate another XpressNet device on this address, you must set your new LH100 to another address.

Information on setting the XpressNet address can be found in the section Settings (p.60).

3.2 Operating Your first Train

For this example we will assume that you are using a locomotive with the address 3, which it the default factory address of NMRA DCC decoders. To operate a locomotive you must first enter the address of the locomotive into the LH100:

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>E...</td>
<td>First clear the display, and begin entering the address</td>
</tr>
<tr>
<td>3</td>
<td>E3...</td>
<td>The number keyed in is displayed. If you keyed in the wrong number, you can clear the last entered digit with ‘CL’. You do not need to enter leading 0s of an address</td>
</tr>
<tr>
<td>Enter</td>
<td>£0003</td>
<td>Now complete the data entry with ‘Enter’. The direction of travel and the status of the functions for this particular locomotive will now be displayed. In this example the direction of travel is forward (arrow on left points up), the functions 0 (light symbol), F1, F3 and F8 are activated.</td>
</tr>
</tbody>
</table>
3.2.1 **Controlling the locomotive’s speed:**

The speed of travel of the locomotive is controlled with any one of the four following *operation keys*.

If you press any one of these keys and keep it pressed, the speed steps will automatically be increased (or decreased) until the maximum upper speed limit (or speed step 0) is reached.

<table>
<thead>
<tr>
<th>Key</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each time you press this key, you decrease (or slow down) the speed of the locomotive by 1 step until the locomotive is stopped.</td>
</tr>
<tr>
<td></td>
<td>Each time you press this key, you decrease (or slow down) the speed of the locomotive by 5 steps in 14 throttle notch mode, 8 steps in 27 or 28 throttle notch modes, or 16 steps in 128 throttle notch mode. The locomotive will slow down at its programmed deceleration rate.</td>
</tr>
<tr>
<td></td>
<td>Each time you press this key, you increase (or speed up) the speed of the locomotive by 1 step until the maximum speed is reached.</td>
</tr>
<tr>
<td></td>
<td>Each time you press this key, you increase (or speed up) the speed of the locomotive by 5 steps in 14 throttle notch mode, 8 steps in 27 or 28 throttle notch modes, or 16 steps in 128 throttle notch mode. The locomotive will speed up at its programmed acceleration rate.</td>
</tr>
</tbody>
</table>

Pressing any of these keys will also cause the display to automatically change from showing the locomotive address to showing the locomotives current speed and direction.

If speed step 0 (locomotive standing still) is reached, the display will automatically change back from showing speed steps to showing the locomotive address.

By pressing the ‘Enter’ key the display toggles back and forth between showing the locomotive’s speed and the locomotive’s address.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>If the locomotive address is shown, you can use the ‘Enter’ key to change to showing the speed steps. This does not change the speed or direction of the locomotive.</td>
</tr>
</tbody>
</table>
When showing the locomotive’s speed, pressing the ‘enter’ key will again change to showing the locomotive’s address.

3.2.2 Changing the locomotive’s direction of travel:
To change the locomotives direction of travel, first set the speed to “0”. Then you can change the direction of travel:

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><></td>
<td></td>
<td>Each pressing of this key changes the direction of travel of the locomotive. The changed direction will be shown in the display.</td>
</tr>
<tr>
<td><></td>
<td></td>
<td>When the arrow is up the locomotive goes forward. When the locomotive points down the locomotive will operate in reverse.</td>
</tr>
</tbody>
</table>

The direction of travel is tied to each locomotive, for example: with a steam engine, forward means “smokestack forward”, regardless of in what direction you have placed this locomotive on the track.

If the locomotive is at speed step 00, each pressing of the '<>' key will change the direction of travel.

The '<>' key also has another function: Pressing the '<>' key while the locomotive is moving will generate an emergency stop for the specific locomotive address on the display.

If the locomotive is operating at a speed step greater than 00, you will need to press the '<>' key a second time to change the direction of travel.

3.2.3 Emergency stop/Emergency off:
With the ![Image](1) key you cause an emergency stop for the entire layout. When this key is pressed, all locomotives will immediately stop. By pressing this key again, the emergency stop is released. This operation of this key can be configured using the set command. (☞p. 18)

At this point you have very quickly learned how to operate a locomotive with the LH100 throttle.

There are many more advanced capabilities that the LH100 provides. These features are described in the following sections. It is not important that you know how to use all these advanced features. You can learn to use them at any time in the future when you have a need.
4 Overview of the features of the LH100

This section will provide you a short overview of each of the functions of LH100. Specific details for using each feature follows in subsequent subsections.

4.1 The LH100 LCD Display

The LH has a two rows of operation LCD display.

- The arrow indicates the direction of motion
 - Arrow upward: forward
 - Arrow downward: backward

- Lines indicate the function groups:
 - 1 vertical line: Function group 1 (F0 to F9)
 - 2 vertical lines: Function group 2 (F10 to F19)
 - 3 vertical lines: Function group 3 (F20 to F28)

- This field indicates the address of:
 - a single locomotive (E)
 - a locomotive in a multi-unit consist (m)
 - a double header (D)
 - a multi-unit consist (M)
 - the speed step (V)

- Numerals 1 to 8 indicate whether functions 1 to 8 of the newly selected function group are activated or not.

- Numeral 9 indicates whether function 9 of the newly selected function group is activated or not.

- The lamp symbol indicates whether function 0 of the newly selected function group is activated or not.

Depending on which mode of operation you are using, the display will look different. The display for the locomotive address always uses 4 digits. Zeros are added in front of the address if needed.

Here are examples of the most important displays:

A single locomotive with address 0003 is being controlled.

A locomotive with address 1234 is in a multi-unit consist.
A multi-unit consist with address 33 is being controlled.

Examples for the display of speed steps:

- Speed step 1 in “28 speed steps” mode

- Speed step 1 in "128 speed steps" mode. Note Speed step 126 is the maximum speed in "128 speed steps" mode.

While the speed step is displayed, the locomotive address is hidden. The direction of travel and the functions continue to be displayed. Press the ‘ENTER’ any time to display the address.

5 Controlling locomotives with the LH100

When you want to control a locomotive, you have to call it up first. There are three different ways you can call up a locomotive you want to control:

- Enter the number of the locomotive on the LH100 keypad
- Toggle between locomotive addresses in the LH100 stack
- Seek out a locomotive from the command station stack.

All addresses from 0 to 9999 are valid. Address 0 is intended for conventional locomotives (ones without a digital decoder).

When you first start using the LH100, it displays locomotive address 0003.

5.1 Changing locomotive speed and direction

How to control a locomotive’s speed and direction of travel was already described in the section "First Steps: Controlling locomotives". Please refer back to this section on how to control the speed and direction of your locomotive.
5.2 Entering a new locomotive address on the LH100 keypad

In the following example a locomotive address "1234" is entered using the LH100 keypad.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>E·</td>
<td>Clear the display first.</td>
</tr>
<tr>
<td>1</td>
<td>E·1·</td>
<td>Begin to enter the address by pressing the first digit of the locomotive's address on the keypad.</td>
</tr>
<tr>
<td>2</td>
<td>E·12·</td>
<td>If you make an error, you can use Cl to erase the last entered digit.</td>
</tr>
<tr>
<td>3</td>
<td>E·123·</td>
<td>You continue by pressing each number in the locomotive's address</td>
</tr>
<tr>
<td>4</td>
<td>E·1234</td>
<td>After you have entered the complete locomotive address you confirm the entry by pressing the 'Enter' key.</td>
</tr>
<tr>
<td>Enter</td>
<td>E·1234</td>
<td>The information about functions, direction and speed step associated with this address will now be displayed.</td>
</tr>
</tbody>
</table>

If the display flashes after you call up a locomotive address, then the locomotive is already being operated by another hand held controller. If you desire you can still take over control of this locomotive. See "Taking over control of a locomotive from another hand held controller" starting on page (p.15).

5.3 Selecting an address from the command station stack

With version 3.6 it is now possible to scroll through a stack of up to 12 locomotive addresses with the 'Esc' key. This is comparable to an index card box with 12 index cards. You can place any locomotive address in any stack slot. The factory default is addresses 1 to 12 in the stack.
5.3.1 **Scrolling through the LH100 stack**

Each time the LH100 is turned on, stack slot 1 is displayed. Factory default, this slot is occupied by locomotive address 1.

Press ‘Esc’ to display the next stack slot.

Release ‘Esc’ to display the locomotive address placed in this slot.

Press ‘Esc’ again to change to the next stack slot …

… and to display the locomotive address placed in this slot.

Continue until the last stack slot is displayed.

After the last stack slot, the first slot will be displayed again …

… with the locomotive address placed therein.

The stack can only be scrolled in the forward direction. To select a locomotive from the LH100 stack simply scroll using the ESC button until the desired address is reached and press ENTER to select.

Entering a new locomotive at the stack address will replace the old locomotive at that stack location.
5.3.2 Setting the stack size
The default stack size has 12 slots. The size can be set from 1 to 12. (⇒ p. 67)

5.4 Taking over control of a locomotive from another hand held controller
When desired you will take over control of a locomotive that is being operated by another engineer. To do this call up the locomotive’s address. The locomotive’s information is now shown flashing. If you don’t want to take over control of the locomotive, but want to find out the current operational data for the locomotive, then each pressing the ‘Enter’ key will update the operational data of the locomotive in your display. If for instance the speed step of the locomotive is changed on the first hand held controller, you can observe that on your hand held controller’s display.

You take over control for this locomotive from the other handheld to your hand held controller by pressing one of the following keys:

The display no longer flashes, and on the display the newest operation and function data is shown. Now the display on the other hand held controller flashes. Only the next operation command (pressing one of the keys shown above) will be sent to the locomotive, which prevents unintended sudden changes of the speed.
5.5 Controlling locomotive functions

Locomotive decoder functions can be activated and deactivated with keys 0 to 9 while controlling the locomotive.

Press	On the display you see	Explanation
0 | ![Display with key 0 pressed] | Function 0 in function group 1 is assigned to the headlights in most locomotive decoders and is shown by the lamp symbol in the lower row of the display.
2 | ![Display with key 2 pressed] | The state of functions 1 to 9 is shown in the second of the display.
8 | ![Display with key 8 pressed] | If the functions are set to on/off mode (factory default), then the first key stroke turns on the function. In this case function 8.
8 | ![Display with key 8 pressed] | The next keystroke turns the function off again.

By pressing one of the keys that turn functions on or off, you are also asking the DCC command station to send the locomotive an instruction to activate or turn off that specific function.

Depending on the selected function group (1 to 3), the following functions are controlled:

<table>
<thead>
<tr>
<th>Key:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function group 1:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Function group 2:</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Function group 3:</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>
5.6 Changing function groups

Up to three vertical lines to the left of the display of the locomotive address indicate the selected function group.

Press this key to change to the next function group.

Press this key to change to the previous function group.

Exception: A multiple-traction address (M) or the address of a locomotive in multiple-traction operation (m) is displayed. In this case, use the '-' key to scroll through the addresses of the locomotives in multiple-traction operation.

Function group 1 is displayed; functions 0, 1, 3 and 8 are activated.

Function group 2 is displayed; functions 12, 13, 15, 17 and 19 are activated.

Function group 3 is displayed; functions 20, 21, 22 and 28 are activated.

Displays function group 1 again.
5.7 Emergency stop and emergency off

The `St` key tells the system to perform an emergency stop. The 'St' key can be programmed to have two different effects:

<table>
<thead>
<tr>
<th>Emergency stop</th>
<th>OR</th>
<th>Emergency off</th>
</tr>
</thead>
<tbody>
<tr>
<td>the locomotives are stopped, but the track power remains on</td>
<td>STOP</td>
<td>the power on the track is shut off</td>
</tr>
<tr>
<td>alternating with</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>FO</td>
<td>(flashes)</td>
<td></td>
</tr>
</tbody>
</table>

The factory default is emergency stop, that is all the locomotives are stopped with track power remaining on. How you set the 'St' key is described in section 14.

5.7.1 Turning off the track power

If an emergency stop has been triggered track power can still be turned off.

- **Press**
- **On the display you see**
- **Explanation**

```
1 E.0003 1 3 0
```

Call up the locomotive address whose function setting you want to display or change

- The emergency stop is displayed.

```
St STOP
```

The display “OFF FO” is designed to remind you of the key stroke sequence needed to turn off the track power:

```
F -- OFF FO
```

You start the power off sequence by first pressing the 'F' key.
Next you press the '0' key. The track power is now turned off.

Pressing the 'St' key a second time resets the emergency stop, the track power is turned on again.

5.7.2 Changing operating information during emergency stop/off

During the emergency stop/emergency off you can change the operating commands that will be sent to the locomotives on the layout once you resume operation. This allows you to fix the problem that caused you to emergency stop the layout before you resume operation.

Press On the display you see Explanation

STOP The emergency stop or emergency off is displayed

alternates with

OFF. FO

You return to controlling locomotives with 'Esc'. You can now change the speed and direction that the displayed locomotive resume with when the layout is turned on again...

Calling up other locomotives and changing their speed and direction is also possible. All the changes made will take effect once you resume operation by pressing the 'St' key a second time.

When in this mode the "E" in the display will blink.

5.7.3 Switching turnouts during emergency stop

Since the track power remains on during the emergency stop, you can continue to switch turnouts and signals:
Press On the display you see Explanation

The emergency stop or emergency off is displayed alternates with

You return to controlling locomotives with ‘Esc’.

The last chosen function menu is displayed You can now change into the mode for switching turnouts and signals.

When you have switched the turnouts and signals, you use ‘Esc’ to return to the emergency stop display.

Close the input with the ‘Enter’ key. The new setting is stored in the command station. ‘Esc’ will take you back to controlling locomotives without storing and changed information.

6 The function menu of LH100

The LH100 function menu provides you access to all other functions of the LH100.

The different menu items can be reached in 2 different ways when you are in the locomotive control mode:

Option 1:
Press and scroll through the menus with until you reach the desired menu

Option 2 (Quick access):
Press and then the number of the desired function. The corresponding numbers can be found in the detailed description of each function.

Following is a brief description of each of the individual LH100 menu items.

6.1 Setting locomotive decoder features, F1
Each individual function between F1 and F28 can be configured on a per locomotive basis to either be on/off or momentary. In **on/off operation** the function is turned on with one keystroke and turned off with the next keystroke. In **momentary operation** the function is only turned on for as long as you keep the corresponding key pressed. When you release the key again, the corresponding function turns off again. Throttle-notch selection and packer refresh are also accessed through the SET-F menu.

The procedure for setting this is described in "Configuring locomotive decoder functions" starting on page (\(\Rightarrow\) p. Error! Bookmark not defined.).

6.2 Double header, F2

![Double header icon]

Double heading allows you to easily assign two locomotives to a double header and then operate it as a single locomotive from either locomotive address. The procedure for setting this is described in "Double header" starting on page (\(\Rightarrow\) p.23).

6.3 Multi-Unit Consist (MU), F3

![Multi-Unit Consist icon]

The LH100 implements smart consisting. Smart consisting allows you to set up a number of locomotives that can be operated as a single unit. As many as 256 locomotives can be controlled at the same time using a common consist address, which we call the locomotive's **multi-unit consist address (MU-address)**. To the operator it is one single locomotive is being controlled, but all the locomotives in the MU react at the same time.

The LH100 (depending on the software version of the command station being used) can control, assemble and disassemble of multi-unit consists. Detailed information is found in "Multi-unit consists (MU)" starts on page (\(\Rightarrow\) p.31).

6.4 Throwing turnouts and setting signals, F5

![Throwing Turnouts and Setting Signals icon]

Using your LH100 you can throw turnouts, set signals or activate
relays. To allow control via the LH100, these devices must be connected to accessory decoders LS100/110/150 of Digital plus by Lenz™ system or other compatible modules. The procedure is controlling these devices using the LH100 is described in "Throwing turnouts and setting signals" starts on page (p.37).

6.5 Display feedback information, F6

The LH100 can also be used to display the status of the inputs generated by feedback encoders LR100/101. These feedback encoders can be used for example to display occupancy of selected locations of your layout.

Directions for displaying feedback information in "Displaying feedback" starts on page (p.40).

6.6 Configuring decoder settings: Programming, F8

Each decoder has settings that can be set to customize the decoder to an individual locomotive, for example the locomotive's address, acceleration and deceleration delays are configurable settings on a locomotive decoder. The LH100 provides two programming methods. Which method you can use depends on your command station and its software version, as well as the locomotive decoders you use. Directions for displaying feedback information in "Displaying feedback" starting on page (p.40).

6.6.1 Operations mode programming, F7

Using operations mode programming or "Programming on the main", the settings of your locomotive decoder can be set, while the locomotive is being operated. For example, couple your locomotive in front of a heavy freight train and now adjust the acceleration delay to fit the train! Operations mode Programming is described in "Programming on the Main (POM)" starting on page (p.42).
6.6.2 Programming on the programming track, F8

Using a separate programming track you can both configure and read back each of the individual locomotive decoder’s settings. Information on using a programming track can be found in “Programming on the programming track” starting on page (p.48).

6.7 System settings, F9

The LH100 allows for configuration of several system settings. For example, how the emergency stop button works, check and change the LH100 XpressNet address, read out the software version of your command station, and more. Detailed descriptions can be found in “Configuring the LH100 handheld using the SYS menu” starting on page (p.60).

7 Setting locomotive decoder features – F1

<table>
<thead>
<tr>
<th>this function menu is reached in one of two ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>F followed by 1 OR F then scroll through the menus using + or - until you see a display of SET--F then press Enter</td>
</tr>
</tbody>
</table>
7.1 Configuring locomotive decoder functions

Functions F1 to F2 of the locomotive decoder can be set to continuous or temporary operations.

Continuous operation
Press the key to activate the functions: press the key a second time to deactivate the functions. (two button pushes)

Momentary operations:
Press the key to activate the functions; release the key to deactivate the function (one button push)

This information is stored in the command station LZ100/LZV100. When calling the locomotive manual control queries the setting from the LZ/LZV.

This setting can be made individually for each function and each locomotive address.

Select the address of the locomotive whose function setting you want to display or change.

The menu that was selected last is displayed.

The configuration of function group 1 (functions 0 to 9) is displayed first.

The figures in the bottom line show the function settings:

Visible functions: Functions are set to continuous operation (here 9, 2, 3, 7 and 8).

Invisible functions: Functions are set to temporary operation (here 1, 4, 5 and 6).

To change the setting, simply press the number key corresponding to the function.

Press ‘+’ to change to the next function group (group 2, F10 to F19). The setting is made analogously to group 1.
Press '+' again to change to function group 3 (F20 to F28).
The setting is made analogously to group 1.

Press 'Enter' to complete the entering process and store the new setting in the command station. Press 'Esc' to return to controlling the locomotive without storing the setting.

7.2 'Refreshing' functions

By 'refreshing' functions we mean the following: In defined regular intervals the command station sends function information via the track to all decoders located on the track. This ensures that a decoder does not 'forget' all settings, even if the connection between command station and decoder is interrupted intentionally (due to 'dead frogs') or unintentionally (due to dirt on the track or power interruptions).

For very large layouts with very many locomotives or decoders it may make sense to deactivate the cyclic transmission of individual functions to decrease the time delay resulting from the total time required for each transmission (typically 8 mS).

This way, you can decide which function information is transmitted cyclically and which not. With factory default, function 0 to 8 is transmitted cyclically. 'Refreshing' affects all locomotive addresses.

To the 'refresh' feature, proceed as follows:

Start with 'controlling the locomotive'.
It does not matter which locomotive address you select.

The menu that was selected last is displayed.

Functions F0 to F8 are transmitted cyclically.

Use '+' to scroll through the options:
Functions F0 to F12 are transmitted cyclically.

Functions F0 to F20 are transmitted cyclically.

Functions F0 to F28 are transmitted cyclically.

Functions F0 to F4 are transmitted cyclically.

Press 'Enter' to confirm your selection.

7.3 Displaying/ changing the speed-step mode

The area from stopped to maximum speed of a locomotive is divided into a series of throttle-notches. The more notches present, the smaller the division between different locomotive speeds. With the LH100 you can set the displayed locomotive address to have 14, 27, 28 or 128 throttle-notches.

This is how you show/change the speed step modes:

Press	On the display you see	Explanation
	Call up the locomotive address whose number of throttle-notches you want to see or change. Make sure that the locomotive is on speed 0; if needed press the '<>' key.	

The menu that was selected last is displayed.

Selects the locomotive decoder features menu

Press '2' to display the throttle-notches mode currently set.
Press '+' to toggle through the throttle-notches available for that address.

Throttle-notches 14 and 27 are only available for addressed 1-99

To confirm the selected number of throttle-notches to this locomotive address, press ‘Enter’.

- If the locomotive's speed is not 0, then the currently set number of throttle notches is shown as long as you keep the '+' key pressed, but the mode cannot be changed.
- For locomotive addresses 100-9999, only 28 and 128-throttle-notches are available for use.
- The locomotive decoder's speed step mode (set via CV29) must match the LH100 number of throttle–positions (p.Error! Bookmark not defined.).

The following correspondence between system and locomotive decoder must be created:

<table>
<thead>
<tr>
<th>System</th>
<th>Locomotive decoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 or 27 throttle-positions:</td>
<td>14 speed steps</td>
</tr>
<tr>
<td>28 or 128 throttle-positions:</td>
<td>28 speed steps</td>
</tr>
</tbody>
</table>
8 Double header - F2

The following describes how to configure and operate two locomotives as a double header, how to combine two locomotives with different speed steps into DH, DH’s error messages, and how to disassemble a DH.

<table>
<thead>
<tr>
<th>this function menu is reached in one of two ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>F followed by 2</td>
</tr>
<tr>
<td>until you see a display of</td>
</tr>
</tbody>
</table>

8.1 Prerequisites for creating a double header

- Each of the two locomotives to be double headed must be called up on the same hand held controller.
- Each locomotive must have given a command (that is changing speed, direction or turning on or off one of the functions)
- The speed step of both locomotives must be 0 when they are joined as a double header.

A non-DCC locomotive (address 0) CANNOT be placed in a double header! If this is attempted an error message is shown.

8.2 Configuring two locomotives as a double header:

First call up the first locomotive (for instance locomotive 24), and move it to the location of your layout where you want to couple it together with the second locomotive.

Then call up the second locomotive (for instance locomotive 78), and move it up next to the first locomotive.

In this manner you make sure that both locomotives called up on your hand held controller and that you also have given each of them an operating command.

Make sure that both locomotives are set to operate in the same direction.

It is of course possible that the direction arrow for one locomotive points up and the direction arrow of the other locomotive points down, since the direction of travel is locomotive dependent.

Proceed as follows:
Press	On the display you see	Explanation
F | The most recently chosen menu is shown | The most recently selected locomotive address is displayed
2 | | This is the prompt to enter the second locomotive address of the double header.
+ | + L... | Enter the number of the second locomotive. If you make a mistake when entering, you can clear the entry with ‘Cl’ and correct it.
2 4 | | ‘Enter’ combines both locomotives to a double header and returns you to the operation display.

Controlling a double header is shown in the display with a "D" instead of the “E”. Behind it is the address of the locomotive that was the first to be added into the double header. Direction arrow and display of functions are the same as when you control a single locomotive.

Control of the double headed can be from either address. When running a double header the operation keys (raise and lower speed steps, direction change) work on both locomotives at the same time. The keys that turn functions on and off work only on the locomotive whose address is shown in the display.

If you want to change a function on the second locomotive operating in the double header, then you must call up this locomotive. Now you can turn a function on or off on this locomotive.

If while operating a double header you want to check what other locomotive belongs to the double header in addition to the locomotive address shown, then press the '-' key. While you keep this key pressed, the address of the second locomotive in the double header will be shown in the display, even when the speed step of the double header was shown at the moment.
8.3 Combining locomotives with different speed step numbers into a double header

Locomotives with different speed steps can be combined into a double header. The speed step corresponding to the speed step of the individual locomotive will always be shown.

Example:

The locomotive with address 24 has 14 speed steps, the locomotive with address 78 has 28 speed steps. If you now see the maximum speed step 14 when showing locomotive address 24, then after you switch over to locomotive address 78 you will see speed step 28, since that is the maximum speed step for locomotive 78.

8.4 Error messages when assembling a double header

If an error is made when assembling the double header, an error message is shown.

<table>
<thead>
<tr>
<th>ERR 24</th>
<th>The locomotive was not selected or no command to the locomotive was sent prior to setting up the MU/double header.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 25</td>
<td>One of the locomotives of the MU/double header is being operated on another Handheld.</td>
</tr>
<tr>
<td>ERR 26</td>
<td>One of the locomotives is already part of another MU/double header.</td>
</tr>
<tr>
<td>ERR 27</td>
<td>One of the two locomotives was not at throttle position 0. Locomotives must be stopped before you can combine them into a consist.</td>
</tr>
</tbody>
</table>

Press the ‘Cl’ key to clear the error message from the display and return to locomotive control.

8.5 Disassembling a double header

Go through the following steps:

Press	On the display you see	Explanation
	000187	Call up one of the two locomotives that are assembled into a double header on your hand held controller.
F	The display shows the most recently chosen menu	
When you want to disassemble the double header press the '2' key, this display flashes. If you want to disassemble the double header, then press 'Enter', if not, press 'Esc'. The double header was disassembled.

The 'Esc' key can be used anytime to interrupt the disassembling of the double header in this process before the final 'Enter' key is pressed.

If the double header is disassembled, the display will again show an "E" in front of the locomotive address.

You can disassemble a double header even when the speed of the locomotive is not currently 0!

9 Multi-unit consists (MU) – F3

This sections covers: definition of multi-unit consist, how a multi-unit consist is assembled and disassembled, how to control functions within a consist.

The multi-unit consist menu is only available when connecting an LH100 to a LZV100 or a LZ100 command station with software version 3 or greater.

9.1 What is a multi-unit consist?

In a multi-unit consist several locomotives are controlled with one common address, the multi-unit consist address. This multi-unit consist address must always be two digits (1-99). The LH100 implements what we call Smart Consisting. With Smart Consisting
control of the MU’s speed and direction can be from any of the locomotive addresses that are within the consist.

When assembling the MU each locomotive in the MU is notified of the multi-unit consist address. This address is stored in the locomotive decoder as a second address. From now on, the locomotives will not “listen” to their own address, but instead will respond to speed and direction commands only sent to the multi-unit consist address. But don’t fear! The locomotive decoder will not forget its own address, it remains stored for later use.

Speed and direction of a MU will be controlled using the multi-unit consist address. If a locomotive that is assembled into a MU has switchable functions (light, smoke generator), you can continue to control these functions via the locomotive’s normal address.

When you disassemble the MU, the multi-unit consist address in the locomotive decoder is erased, and the locomotive immediately responds to its own address again.

> All locomotives that are to be used in assembling or disassembling in a MU must be on the layout! That’s the only way the special MU commands that are sent over the track can also reach the locomotive decoder! This is especially important when you want to remove a locomotive from the multi-unit consist: If the disassemble command doesn’t reach the locomotive decoder (due to bad contact or because you removed the locomotive from the track), then the MU address in the locomotive decoder will not be erased, and the locomotive can’t be run on its own normal address.

9.2 Prerequisites for a multi-unit consist:

You can set up multi-unit consists with any NMRA conformant locomotive decoders from the Digital plus by Lenz® program. The locomotive decoder must be configured for operation with 28 speed steps.

9.3 Assembling a multi-unit consist (MU)

Drive all the locomotives to be assembled into the MU to the location on the layout where the MU to be created.

It does not matter which direction the locomotives were operated before assembling them into the MU as you will be asked the direction for each locomotive you add to the MU. This allows you to construct MUs with locomotives head to tail or elephant style.
Begin assembling the MU:

Press	On the display you see	Explanation
F | E.1234 | Call up the first of the locomotives that you want to include in a MU.

Display shows the most recently selected menu

3 | M+1234 | The prompt for entering the multi-unit consist address is shown

+ | MU. _ | Key in the number of the MU. This number can only have two digits.

3 | MU. 3 | If a mistake is made, then you can clear the last digit with the 'Cl' key and make corrections.

MTR. 33

Enter | E.1234 | The direction arrow now blinks. At this point decide which direction the locomotive will enter relative to the consist direction.

<> | E.1234 | Pressing the '<>' key will change the blinking arrow to point down. This means that the locomotive will enter the consist in the reverse direction. Moving the consist forward will cause the locomotive to move backwards.

<> | E.1234 | Pressing the '<>' key again causes the blinking direction arrow to now point up or forwards. The locomotive will now enter the consist moving in the same direction as the consist.

Enter | m.1234 | The "E" in the display now changes to a small "m" to show you that this locomotive is in a MU.

Now call up the next locomotive that you want to include in the MU and repeat the steps that you already made to include the first locomotive in the MU for this next locomotive.
Keep repeating this until you have included all the locomotives that you planned on in the MU. Locomotives can be added an subtracted from an MU at any time.

9.4 Controlling a multi-unit consist

To control a MU you call up either the MU address or one of the locomotives that are part of the MU.

The MU address itself is shown by a capital “M” in the display, a small “m” informs you that you this is a locomotive that has an address that is part of a MU.

9.4.1 Speed and direction of the MU

When controlling a multi-unit consist the operation keys (increase and decrease the speed step, changing the direction of travel) work on all the locomotives in the MU at the same time. Therefore it does not matter if the MU address (shown by a capital “M”) or the address of a locomotive in the MU (shown by a small “m”) is on display.

9.4.2 Controlling functions of a locomotive within a MU

The keys that turn functions on and off work only on the locomotive included in the MU whose address is shown in the display (shown by a small “m”). When the MU address (“M”) is shown it is NOT possible to switch any functions, and no function information is displayed.

To operate functions in a running MU, call up the individual locomotive’s address “m”, and press the function key(s) desired. (see next section).

9.5 Displaying the members of a MU and switching between locomotives in a MU

At any time the complete list of locomotives in the MU is available, as well as the MU address itself, regardless if the multi-unit address is displayed (shown by a capital “M”) or one of the locomotive’s address displayed (shown by a small “m”).
Press	On the display you see	Explanation
	M: 0033	Call up a locomotive in the MU or the MU address itself
- | m:1234 | Repeated pressing of the '-' key shows you all the addresses assembled in the MU and the MU address one after the other.
- | m:0004 | Select the currently displayed address for control by pressing ‘Enter’. The functions and direction for this locomotive are now displayed
Enter | m:0004 | This “scrolling” through the MU is especially helpful when you quickly want to switch to a particular locomotive in order to turn its functions on or off.

9.6 Removing a locomotive from a MU
At any time any individual locomotive that is part of a MU can be removed from the MU:

Press	On the display you see	Explanation
	M: 0004	Call up the address of the locomotive you want to remove from the MU
F | Display shows the most recently selected menu | The prompt to remove this address from the MU is shown
3 | M: 1234 | This display flashes. You now have the last opportunity to interrupt the removal with ‘Esc’.
- | m: 1234 | ‘Enter’ removes the locomotive from the MU, and the display will then again show an ‘E’.

When you remove the last locomotive address from the MU, the MU itself will be erased.
9.7 Erasing a complete MU

If you want to remove all the locomotives from a MU at one time then proceed as follows:

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M: 0033</td>
<td>First call up the MU address (shown by a capital “M”).</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Display shows the most recently selected menu</td>
</tr>
<tr>
<td>3</td>
<td>-- MU: 33</td>
<td>The prompt to erase this MU is displayed.</td>
</tr>
<tr>
<td>-</td>
<td>-- MU: 33</td>
<td>This display flashes. You have the last opportunity to interrupt the erasing with ‘Esc’.</td>
</tr>
<tr>
<td>Enter</td>
<td>-- m: 1234</td>
<td>‘Enter’ starts the disassembly.</td>
</tr>
<tr>
<td></td>
<td>-- m:0004</td>
<td>Each individual locomotive addresses in the MU is displayed and erased from the consist.</td>
</tr>
<tr>
<td></td>
<td>-- m:0033</td>
<td>Finally the consist address is shown as an individual locomotive address.</td>
</tr>
</tbody>
</table>

9.8 Error messages in multi-unit consists

If an error was made when assembling the multi-unit consist, you will see one of the following messages in the display:

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 24</td>
<td>The locomotive was not selected or no command to the locomotive was sent prior to setting up the MU/double header.</td>
</tr>
<tr>
<td>ERR 25</td>
<td>One of the locomotives of the MU/double header is being operated on another Handheld.</td>
</tr>
<tr>
<td>ERR 26</td>
<td>One of the locomotives is already part of another MU/double header.</td>
</tr>
<tr>
<td>ERR 27</td>
<td>One of the two locomotives was not at throttle position 0. Locomotives must be stopped before you can combine them into a consist.</td>
</tr>
</tbody>
</table>

Press the ‘Cl’ key to clear the error message from the display and return to locomotive control.
10 Throwing turnouts and setting signals - F5

This function menu is reached in one of two ways:

- **F** followed by **5** OR
- **F** then scroll through the menus using **+** or **-** until you see a display of **resden** then press **Enter**

With the turnout control function the hand held controller LH100 can throw turnouts, set signals or for instance activate relays. For this to work, these devices must be connected to accessory decoder LS100/110/150 of the *Digital plus by Lenz* ® system or to other compatible NMRA DCC accessory decoders.

Proceed as follows:

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>斯顿</td>
<td>Enter the number of the turnout that to be activated</td>
</tr>
<tr>
<td>5</td>
<td>ston</td>
<td>If needed the 'Cl' key can be used to correct the entry</td>
</tr>
<tr>
<td>1</td>
<td>ston</td>
<td>The valid entry range is 1 to 1024. If a higher value is entered, then the prompt for turnout address is shown</td>
</tr>
<tr>
<td>6</td>
<td>ston</td>
<td>Following the number (address) of the turnout will now appear a + or - to show the status of the turnout (or signal).</td>
</tr>
<tr>
<td>Enter</td>
<td>ston</td>
<td>Use the '+' or '-' keys to change the status of the turnout (or other device connected to the accessory decoder).</td>
</tr>
<tr>
<td>-</td>
<td>ston</td>
<td>The changed status is shown.</td>
</tr>
<tr>
<td>+</td>
<td>ston</td>
<td>To throw another turnout, press the 'Cl' key and enter the new number of the turnout (or signal) and proceed with the '+' or '-' keys.</td>
</tr>
</tbody>
</table>

LENZ ELEKTRONIK GMBH
10.1 Feedback & display of the turnout position

10.1.1 Using non-feedback capable accessory decoders
In this case the last command sent to the accessory decoder is shown on each LH100.
The display of the turnout position on the LH100 display changes automatically when the turnout position is changed by another LH100 (or another XpressNet device, for instance a tower cab).

10.1.2 Using feedback capable accessory decoders
When you are using the feedback capable accessory decoder LS100, and the feedback bus is connected to the LZ100, turnouts with end-of-stroke-off drives will show the actual turnout position as + or - whenever the turnout is called up.

Let's assume that turnout 18 has an end-of-stroke-off drive and is correctly connected to an accessory decoder LS100. Enter the number of the turnout (see above). The hand held controller gets a message from the command station that it is a feedback capable accessory decoder and now shows the following:

A ‘R’ on the left shows you that you have called up a turnout number of a feedback capable accessory decoder.

When calling up the turnout the position may be shown as for example +. If you now press the ‘-’ key to throw the turnout, then the display will first change to ‘-’. If you press the ‘-’ button and the turnout does not throw, you will see for a short moment ‘-’ in the display, and this will become a ‘+’ after you stop pressing the button. This way you can immediately see if a turnout has changed position or not. The display will also change when you throw the turnout by hand.

NOTE: Depending on the time that the turnout drive needs to reach its end of stroke, it may take a little while until the information in the display is correct.

For information on wiring the feedback bus please see the operation manuals for the feedback capable devices.

If the turnouts are not feedback capable, or connected to a non-feedback capable accessory decoder, then you can’t have actual feedback of the turnout position. In this case you will see the last entered position (+ or -) when you call up the turnout. And when you press the + or - keys, the display will update immediately.
If after entering for instance the turnout address ‘118’ you see this display

```
R* 118 --
```

then this address is not an accessory decoder, but a feedback encoder LR100.

In this case pressing the ‘+’ or ‘-’ key will have no effect. Using the ‘Cl’ key you can get back to entering a new turnout address, using ‘Esc’ you can get back to controlling locomotives. Information about displaying the status on feedback encoders is in section "Displaying feedback" starting on page (☞p.40).

10.2 Train operation while controlling turnouts or signals

While displaying a turnout address and its status, you can still use the operation keys to control the most recently called up locomotive.

When you press one of the operation keys, this locomotive address or speed is shown in the display. The turnout's address is shown when you stop pressing the key.

The locomotive’s address’ direction arrow and the status of the decoder functions are always shown in the display. This way you can still control the selected locomotive even while you throw turnouts and set signals. **This allows for comfortable execution of yard switching operations.**
11 Displaying feedback – F6

Using this LH100 function you can show the status of any of the LR100/101 feedback encoders inputs.

Using this LH100 function you can show the status of any of the LR100/101 feedback encoders inputs.

Press	On the display you see	Explanation
F followed by 6	Display shows the most recently selected menu	This is the prompt to enter the feedback encoder address
6	0.00.	Let's assume that you want to show the 8 feedback inputs of feedback encoder address 39 on the display.
3	0.00.3	Using the ‘Cl’ you can correct your entry if needed. After you press ‘Enter’ the hand held controller will check the status of the feedback encoder and show the results.
9	0.00.39	In the upper row of the display you will see “OD” to indicate that you are displaying feedback information, and next to it the address of the feedback encoder read.
	In the lower row, next to the ‘b’ the status of the 8 inputs on the feedback encoder address will be shown. In the example, a display of 1 3 4 6 8 means that the feedback inputs 1, 3, 4, 6 and 8 are active and inputs 2, 5, and 7 are inactive.	
Enter | 0.00.39 | 1 3 4 6 8 |
address. There will also not be any display in the binary form. The valid range for entry of feedback encoder addresses is 1 to 128. If you enter a smaller or larger value, then you will again be prompted to enter a feedback encoder address.

12 Reading/Changing a decoder settings

Each locomotive decoder, accessory decoder or feedback encoder has a number of settings that can be changed to customize that decoder’s particular use.

Each of these settings is stored in a memory location inside the decoder. These memory locations are similar to index cards in a box. Each decoder has such an “index box”. Each “card” has one setting of the locomotive decoder written on it, for instance on “card” number 1 the locomotive address, on “card” number 3 the acceleration delay. In other words, one card for each decoder setting. Depending on the number of settings available in this decoder the “index box” is sometimes bigger, sometimes smaller. On each “card” is a numeric value, the general value range of such a card is 0 to 255.

Since you can change the values on these index cards again and again, they are also referred to as variables. Using these variables, settings are determined, configured, and hence in the US we developed the term “Configuration Variable” (CV). From now on we will not refer to index cards any longer, but use the correct term CV. Using CVs, the settings or the behavior of a decoder are described.

Which CV contains which information is standardized. For instance CV1 is always the address of a locomotive, CV3 is always the acceleration and CV4 is always the deceleration delay. A description of the available CVs and their settings is described in the Digital plus by Lenz® locomotive decoder manuals. This information can be downloaded in the internet from www.lenz.com, obtained from your model railroad retailer, or by sending a stamped, self-addressed envelope to Lenz Agency of North America.

Not all the possible values from the range 0 to 255 are always valid. For the setting “basic address”, CV1 only the value from 1 to 99 is valid. For CV53 (dimming the function outputs) on the other hand, the full range of 0 to 255 is valid.

CVs, also, contain the entered number in another form of writing to make the use easier. This other way of writing is called binary writing. Here the numeric value is not written using the digits 0,1,2,3,4,5,6,7,8,9, but using only the numbers 0 and 1.
It is easier to imagine those CVs as a series of 8 switches, that can be on or off. These switches are referred to as “Bits”. If the switch is on, then we say “the Bit is set” or “the Bit is 1”. If the switch is off, then we say “the Bit is erased” or “the Bit is 0”.

12.1.1 Difference between Operation mode programming and service mode programming

Using operations mode programming or “Programming on the Main”, the locomotive can be operating anywhere on your layout. To communicate with this exact locomotive and differentiate it from all others, the address of the locomotive that is to be programmed must be displayed. In “Ops mode” programming the locomotive receives a command that can be written something like this:

“Locomotive number 1234, enter the value 15 in CV4,” Only the locomotive with address 1234 will carry out this command.

When you use service mode or “programming on the programming track” it is not necessary to know the address of the decoder. In this case all decoders on the programming track will receive and react to the programming instruction sent.:

12.2 Programming on the Main (PoM) – F7

<table>
<thead>
<tr>
<th>this function menu is reached in one of two ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>F followed by 7</td>
</tr>
<tr>
<td>then press Enter</td>
</tr>
</tbody>
</table>

Programming on the main is mainly of interest for locomotive decoders, since using PoM the settings of the decoder can be changed on the normal “operating” track, which means the locomotive can be anywhere on your layout.
The use of PoM requires command station version 3 or higher. The PoM menu is not available when using the LH100 with a command station with a software version prior to 3.

To change the settings in a particular locomotive using PoM, you must know the address of this locomotive, all programming commands are dependent on the locomotive address. The command station will send a command in this manner: “Locomotive number 132 store an acceleration delay of 10!” This command will be carried out only by the locomotive with address 132 and none other. If the address isn’t known or you want to change the address of a locomotive, you need to use the mode “Programming on the Programming Track” starting on page 48.

Reading CVs in POM is only available for RailCom equipped decoders (p. Error! Bookmark not defined.). With other decoders PoM you can only write values into a CV, not read them out. You determine the success of your programming by observing the actual change of the setting in action.

12.2.1 Which settings can be changed with PoM?
All the CVs present in a locomotive decoder can be changed with PoM, For this reason you should be careful as you proceed, since if you make a mistake in programming, the locomotive may not operate until the CV value is corrected! In day-to-day operation you will probably change the CVs for the acceleration and deceleration the most frequently.

You should never change CV17 or CV18 when operating with an address greater than 99 as the change of one of these CVs effects the operating address of the locomotive.

12.2.2 Programming a numeric value into a CV — step by step approach with POM:
In the following example we will change the acceleration delay on a locomotive with address 3 using PoM:

Before you switch to PoM, you must call up the address of the locomotive whose settings you want to change!
Press	On the display you see	Explanation
F | Display shows the most recently selected menu |
7 | |
- | | Page with the '-' key until the "CV" display is shown.
Enter | | Now enter the number of the CV whose value you want to change.
3 | | The value for the acceleration delay is stored in CV3.
Enter | | Enter the value that you want to write into the CV.
6 | | If you make a mistake, you can use 'C' to erase the last digit.
Enter | | With 'Enter' you start the programming sequence and change the value of this CV in this locomotive.
Esc | | With 'Esc' you return to entry of a CV number. You can now directly go to changing another CV.
Esc | | press 'Esc' 2 more times to return back to controlling locomotives.
Esc | |

The procedure is always the same, regardless of which CV you want to change with PoM, by simply entering the corresponding number of the CV and then entering the value to be stored in that CV.

12.2.3 Fast changing of a CV in POM
Select the address of the locomotive whose features you want to change via PoM.

The menu that was selected last is displayed.

The programming mode that was selected last is displayed.

Use '-' to scroll to 'CV'.

Enter the number of the CV whose value you want to change.

In our example we selected CV3 (starting delay).

Confirm your selection with 'Enter'.

Use the arrow keys to change the CV selection.

Every time you change the CV number a PoM read command is sent to the locomotive decoder. The result of this command can be displayed with an address display LRC120; see Section ‘Error! Reference source not found.’ below.

12.2.4 Fast changing of a CV value in POM

If you have selected a CV or entered and confirmed a value with 'Enter' during POM mode, you can increase or decrease this value simply with '+' or '-'. The new value will be entered immediately into the decoder.

This is particularly helpful if you, for example, want to adjust the brightness of the locomotive lighting.

If you have selected a CV and entered a value, you can increase or decrease this value with '+' or '-'. The new value will be entered
immediately after each change (unlike when programming on the programming track).
Keep pressing ‘+’ or ‘-’ to increase or decrease the value.

12.2.5 Shortcut to the most common settings
We have built in a convenient mode for setting the most commonly changed CVs using PoM. In this mode you don’t have to know or look up the number of the CVs,

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Call up the locomotive whose settings you want to change using PoM</td>
</tr>
<tr>
<td>F</td>
<td>Display shows the most recently selected menu</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CV.</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>DIR.</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>STV.</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>ACC.</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>DCC.</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>MAX.</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>STV.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>STV. 6.</td>
<td></td>
</tr>
</tbody>
</table>

Page with the ‘-’ key until you get to the display “DIR”
Now you can page through the most important settings. “STV” stands for starting voltage (CV2)
“ACC” stands for acceleration delay (CV3)
“DCC” stands for deceleration delay (CV4)
“MAX” stands for maximum speed (CV5). Please note that not all decoders use CV5.
Page until you see the setting you want displayed.
Use ‘Enter’ to select the desired setting.
Now enter the value you want.
12.2.6 Setting and erasing bits (switches) using PoM — step by step procedure

Many CVs don’t use numeric values, but individual bits (switches) for particular settings. It is then much easier to get the needed setting by setting and erasing the individual bits (switches), instead of calculating the corresponding numeric value and then program it into the CV (which of course also works).

Press	On the display you see	Explanation
 Enter | STV | ‘Enter’ starts the programming, and once it is done, you are returned to selecting the setting.

| Call up the locomotive whose settings you want to change using PoM |
|---|---|---|
| Display shows the most recently selected menu | | |
| Page with the ‘-’ key until the display shows “CV” | | |
| Enter the number of the CV you want to change. In this example we will select CV29 | | |
| First press the ‘2’ key | | |
| Next press the ‘9’ key. When you press enter this will select CV29. | | |
| Instead of entering the decimal number that you want to program, press Enter again to enter bit mode. | | |
| In bit mode you can enter a value from 1 to 8 for the bit you wish to change. In this example we will select bit 2. You can toggle between a value of 0 and a value of 1 using the ‘-’ or ‘+’ keys | | |

| | | |
When you are ready to program press the ‘Enter’ key.

A "P" will be displayed briefly on the bottom of the display to indicate that the programming has taken place.

Press the 'ESC' key four times to completely exit PoM and return to operating trains.

12.2.7 **Reading CVs with the address display LRC120**

In PoM whenever you

- enter a CV number,
- change this number with the < or > arrow keys,
- change the value of the CV with the '+' or '-' keys,

a PoM read command is sent to the decoder sending the content of the respective CV via RailCom. The address display LRC120 receives this information and displays it for approx. 3 seconds.

Requirements:

- Use of a RailCom equipped locomotive decoder (GOLD series).
- The locomotive is located in a track section monitored by the address display LRC120.
- RailCom transmission is activated in the decoder.
- The system has its RailCom cutout enabled.

Information on how to connect the address display LRC120 and the settings of RailCom-able locomotive decoders can be found in the respective operating manuals.

Proceed as follows:

Enter the address of the locomotive whose features you want to change via PoM.

Move the locomotive whose CVs you want to read via PoM to the track section monitored by the address display LRC120. The address display now shows the address of the locomotive.
The menu that was selected last is displayed.
The programming mode that was selected last is displayed.

Use '-' to scroll to 'CV'.

Enter the number of the CV whose value you want to change.

The value for the starting delay is stored in CV3.

The address display LRC120 displays the value of CV3 for approx. 3 seconds.

'On the LRC120 c' is flashing at the very left of the display while the value of the desired CV is shown on the right:

12.3 Programming on the Programming track – F8

<table>
<thead>
<tr>
<th>this function menu is reached in one of two ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F](followed by [8]) OR [F] then scroll through the menus using [+] or [-] until you see a display of [PROG] then press [Enter]</td>
</tr>
</tbody>
</table>

12.3.1 When do you need the programming on the programming track?
1. Whenever you want to change the address of a locomotive decoder.
2. When you want to display information currently stored within the CV.
3. There are also older Digital plus by Lenz ® decoders that do not understand the “Programming on the Main” mode.

Many entry level, older locomotive or most accessory decoders do
not have the capability to be programmed using operations mode programming. For all these decoders you need to use the “Programming on the programming track” mode.

12.3.2 What is a programming track?
Using “Programming on the programming track” it is not necessary to know the address of the decoder. You must make sure that when you are programming on the programming track only the desired decoder will receive this command. This is most easily done by using a track that is
1. electrically isolated from the rest of the layout, and
2. on which you place only the desired locomotive you wish to program.

12.3.3 Where is the programming track / the decoder connected?
The command station LZV100 has special connection terminals for the programming track. These connections are labeled P and Q. More information about them is found in the operation manual for command station LZV100.
If you want to program an accessory decoder, then you don’t need a track. Simply connect the decoder directly to terminals P and Q on the LZV100.

12.3.4 Display on other connected hand held controllers
When the LZ100 enters programming mode, power to the layout is stopped. While the command station remains in the programming mode, all displays other than the one performing programming operations will show “PM”.

12.3.5 Programming and reading a locomotive address and other key settings: The “DIR” menu
The simplest way to program a locomotive address is with the “DIR” menu (for “Directory”). Using this menu has the advantage that you don’t have to know or look up the number of the CV, instead easy to understand abbreviations help you.

The procedure for reading and writing is identical, and the following simple principle applies: Where the value to be programmed needs to be keyed in, you can read out the current value in the decoder, when you immediately (that is without entering a numeric value) press the ‘Enter’ key.

Step by step procedure to read a locomotive address:

Press	On the display you see	Explanation

The most recently selected menu is shown

Programming on the programming track

The most recently selected programming mode is shown

Scroll with '-' until "DIR" is displayed.

If "ADR" is not displayed, then use '-' to scroll until you get to this display.

At this point you can begin with entering the new address (or use 'Enter' to read out the address).

Pressing 'Enter' displays the locomotive address stored in the locomotive decoder. During the reading process, the second row in the display shows a "L".

After reading an address you can press the 'CL' key to clear the display to allow you to enter a new address.

After entering the new address you press the 'Enter' key to write this new address to the decoder. During the programming sequence the second row of the display shows a "P".

You can return to controlling locomotives by 'Esc' 3 times, or you can press 'Cl' to go on to write a new locomotive address.

The 2-digit addresses (1-99) are stored in the locomotive decoder in CV1, 4-digit locomotive addresses (100-9999) in CV17 and CV18. When programming with "DIR" you don’t have to think about this. All necessary settings are automatically made in the locomotive decoder for you!
If when reading the address you get this display

```
M 1234
```

then the locomotive decoder is assembled into a multi-unit consist address. Press the ‘+’ key’ and the MU address that is stored in CV19 is read out and shown:

```
+ M0033
```

If you enter a new address, the new address is stored in the decoder and the MU address in CV19 is erased!

12.3.5.1 Additional settings that can be programmed and read out with the “DIR” menu

Aside from the address, the “DIR” menu offers you a simple method for programming the other key locomotive settings.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>DIR.</td>
<td>Scrol with ‘-’ until “DIR” is displayed</td>
</tr>
<tr>
<td>Enter</td>
<td></td>
<td>First you are prompted to read/write the locomotive address.</td>
</tr>
<tr>
<td>+</td>
<td>ACC.</td>
<td>The ‘+’ or ‘-’ key lets you page through the other settings. “ACC” stands for acceleration delay (CV3).</td>
</tr>
<tr>
<td>+</td>
<td>DCC.</td>
<td>“DCC” stands for deceleration delay (CV4).</td>
</tr>
<tr>
<td>+</td>
<td>STV.</td>
<td>“STV” stands for starting voltage (CV2).</td>
</tr>
<tr>
<td>+</td>
<td>MAX.</td>
<td>“MAX” stands for maximum speed (CV5). Please note that not all decoders use CV5.</td>
</tr>
</tbody>
</table>

To show the value of one of the above settings (CVs), press ‘Enter’, when the setting is displayed., To change the value, key in the desired value followed by ‘Enter’. To read out the value in the CV press ‘Enter’ without entering any new value.
12.3.6 Reading and writing by entering a specific CV : Direct CV mode

Any decoder CVs can be written and read using direct CV mode, .. While we will only show CV1 here as an example, the procedure is the same for all CVs,

Press	On the display you see	Explanation
F | The most recently selected menu is shown | Select “Programming on the programming track”
8 | (flashes) | The most recently chosen programming mode is shown.
Enter | | Use the '-' key to page to the display of "CV".
- | C : _ | Here enter the number of the CV that you want to read / write. Values between 1 and 256 are allowed.
1 | C : 1 | In this place you can either enter the value that you want to program, or read out the value of the CV by pressing ‘Enter’ again.
Enter | | The value in the CV is read out and shown. In this case the value 78 was found in CV1.
| | Press 'Cl' to erase the value from the display. Now you can enter a new value or
| | If instead of pressing ‘Cl’ you press ‘Esc’, you return to the display that allows you to select another CV to read or write.
| | Another ‘Esc’ brings you back to the menu that allows you to select the programming mode.
| | With a final ‘Esc’ you leave the programming menu and return to controlling locomotives.

or

Esc | |
Make sure you do not exceed the valid range of values for the decoder when entering data! If needed, refer to the operation manual of the decoder. You can clear an entry made in error with the ‘Cl’ key.

If your decoders do not support the “CV” direct programming mode, you can program these decoders in what is referred to as “register mode” or in “paged mode”. For more information, see section 13.3.5 and 13.3.6 starting on page (p).

CV7 (version number) and CV8 (manufacturer information) can only be read, not written.

12.3.6.1 Setting and erasing bits in a CV
In programming on the programming track you can also set or erase individual bits (switches) in CVs. Proceed as follows:

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>PROG.</td>
<td>The most recently selected menu is shown (flashes)</td>
</tr>
<tr>
<td>Enter</td>
<td></td>
<td>Page with ‘-’ or with ‘+’ until “CV” is displayed</td>
</tr>
<tr>
<td></td>
<td>C.</td>
<td>Enter the number of the CV you want to read/write here.</td>
</tr>
<tr>
<td>2</td>
<td>C.2</td>
<td>In this example CV29 is used. If you make a mistake when entering, you can erase the last digit with ‘Cl’.</td>
</tr>
<tr>
<td>9</td>
<td>C.29</td>
<td>Read out the value of the CV first. This is done by pressing ‘Enter’.</td>
</tr>
</tbody>
</table>

This is done by pressing ‘Enter’.
The value in the CV is read and shown. In the lower row the displayed digits show you which bits are set in this CV. In this example bits 2 and 3 are set.

Rule: Bits shown in the second row are set (have a value of 1), bits that are not shown are clear (have a value of 0).

If you want to make changes, then press the corresponding numeric keys. In the following example bit 1 is to be set and bit 3 erased:

1 2

Pressing the ‘1’ key shows that bit 1 is to be set. The resulting decimal value is automatically shown in the upper right.

By pressing the ‘3’ key, the display of bit 3 is erased.

Using ‘Enter’ the CV is re-written. During programming the “b” in the second row changes to a “P”.

Press the ‘Esc’ key 3 times to completely exit service mode

12.3.7 Reading and writing by entering using register mode

Older Digital plus by Lenz® decoders (series produced before 1996) and decoders from some other manufacturers do not support programming by entering the CV.

These decoders are programmed by what is called “register” mode. Some accessory decoders must also be programmed in this manner.

For more details, see the operation manual for the decoder.

The procedure for reading / programming in register mode is the same as when programming using CV mode, with the exception that there are only 8 registers to choose from.
Press On the display you see Explanation
F The most recently selected menu is shown
8 (flashes) Select “Programming on the programming track”
Enter The most recently selected programming mode is shown
- Use ‘-’ or ‘+’ to page until “REG” is shown on the display.

Here enter the number of the register that you want to read/write. Values of 1 to 8 are allowed.

In this example register 1 is selected. If you make a mistake, you can erase the last digit with ‘Cl’.

In this location you can either enter the value that you want to program, or read out the value in the register by pressing ‘Enter’ again.

The value in the register is read and shown. In this example the locomotives address is 78.

Press ‘Cl’ if you want to enter a new value or press ‘Esc’.

After you have read or written a register, use ‘Esc’ to return to selecting another register.

Another ‘Esc’ takes you back to selection of programming mode.

With the last ‘Esc’ you leave the programming and return to controlling locomotives.

12.3.8 Reading and programming by using paged mode

Paged mode is an older and slower method for reading and setting CVs. This mode of programming can be used to program many decoders that do not support the faster Direct CV Mode.

The procedure for programming in Paged mode is identical to the procedure in Direct CV mode. The following assumes you have already entered programming and are at the programming menu.
12.3.9 Using ID Programming Menu

Often you need to know version of the decoder and the manufacturer of the decoder. ID mode is a simple method that reads both of these values for you.

- Use ‘-’ or ‘+’ to page until the display shows “ID”.
- Use ‘Enter’ to check the identity of the decoder. The first number that is displayed is the decoder’s version number.
- Use the ‘-’ or ‘+’ key to check the manufacturer of the decoder.
- Press the ‘Esc’ key to return to the programming menu.

12.3.10 Using the Reset Programming Menu

Sometimes it is desired to reset the decoder to factory default. Not all decoders support a reset command. In this case it is necessary to rewrite all the CVs back to a known condition. The LH100 "RESET" programming writes all the important CVs used by Digital plus by Lenz® decoders back to a factory default condition.

- Use ‘-’ or ‘+’ to page until the display shows “RESET”.

You can program any CV in the range between 1 and 256 using "Paged Mode"
Press 'Enter' the display will now blink "RESET" you can abort the operation now by pressing the 'Esc' key, or continue with the reset procedure by pressing the 'Enter' key a second time.

You will see a series of CV values flash in the display.

When the procedure is completed the display will return you to the initial programming menu.

The reset command uses direct CV mode to set the following CVs:
CV1 to 3; CV2 to 7; CV3 to 0; CV4 to 4; CV5 to 15; CV9 to 1; CV19 to 0; CV29 to 2; CV30 to; CV50 to 1; CV51 to 0; CV52 to 64; CV53 to 0; CV54 to 1; CV55 to 2; CV56 to 30; and CV60 to 3.

12.4 Speed Enhancements for programming on the programming track

With version 3.6 you can enter and read CVs from 1 to 1024 on the programming track. This procedure speeds up the CV programming.

Depending on the selected CV, the display shows:

<table>
<thead>
<tr>
<th>CV 1 – 99:</th>
<th>CV 100 – 999:</th>
<th>CV 1000 – 1024:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C99...</td>
<td>127...</td>
<td>024...</td>
</tr>
</tbody>
</table>

When you have selected a CV and entered or read a value, use the arrow or plus and minus keys to:

- read the next CV.
- read the previous CV.
12.4.1 Fast changing of a CV value
If you have selected a CV or entered and confirmed a value with 'Enter' during programming in operational mode, you can increase or decrease this value simply with '+' or '-'. The new value will be entered immediately into the decoder.
This is particularly helpful if you, for example, want to adjust the brightness of the locomotive lighting.
If you have selected a CV and entered a value, you can increase or decrease this value with '+' or '-'. The new value will be entered immediately after each change (unlike when programming on the programming track).
Keep pressing '+' or '-' to increase or decrease the value.

12.5 Error messages during programming
If you made an error during programming, a message will be shown in the display:

<table>
<thead>
<tr>
<th>ERR 01</th>
<th>When programming or reading a decoder, a power overload (short circuit) was detected. The decoder may not be correctly connected or may be defective.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 02</td>
<td>When programming or reading a decoder, no decoder acknowledgement was detected. That could mean that the decoder is not correctly connected to the programming output on command station LZ100 (for example the digital locomotive may not be properly placed on the programming track) or the decoder is not functioning properly.</td>
</tr>
</tbody>
</table>

Press the 'Cl' key to clear the error message from the display and return to locomotive control.
13 Configuring the LH100 handheld using the SYS menu – F9

Using the SYS menu it is possible to customize the operation of an LH100 handheld and also to learn about characteristics of the system.

<table>
<thead>
<tr>
<th>this function menu is reached in one of two ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>F followed by 9</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>+ or – then scroll through the menus using</td>
</tr>
<tr>
<td>until you see a display of SYS then press Enter</td>
</tr>
</tbody>
</table>

13.1 Entering the XpressNet device address - SYS_0

All the input devices connected to XpressNet must have their own device address for the correct information exchange with the command station. You must therefore make sure that all the connected devices have different device addresses. You can currently connect up to 31 devices to XpressNet, which means that each device must have an unique address between 1 and 31. Every LH100 is programmed to device address 01 by factory default. If you are going to use two or more hand held controllers, then you must program different addresses for each hand held controller.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>The most recently selected menu is shown</td>
<td>This is the prompt to enter the setup that you want to read/change.</td>
</tr>
<tr>
<td>9</td>
<td>SYS</td>
<td>SET0 is setting the XpressNet address. The currently set address is shown.</td>
</tr>
<tr>
<td>0</td>
<td>LHR01</td>
<td>With 'Cl' you clear the display to allow entering another address.</td>
</tr>
<tr>
<td>Cl</td>
<td>LHR_</td>
<td>In this example address 2 is entered. If you make an error, you can use 'Cl' to erase the last entry.</td>
</tr>
<tr>
<td>2</td>
<td>LHR2_</td>
<td></td>
</tr>
</tbody>
</table>
Using 'Enter' the newly keyed in address is stored and you go back to the menu.

'Esc' returns you to controlling locomotives.

Please make note when you set the XpressNet address to which device your LH100 is connected:
The LZV100 can addresses XpressNet devices 1 to 31.
You must not use an address that already has a device set to it.

13.2 The LH100 configurations menu: SYS_1
The system menu is where primary settings that affect the operation of LH100 hand held controller itself are made.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>The most recently selected menu is shown</td>
<td>This is the prompt to enter the setup of the parameter you want to read/change.</td>
</tr>
<tr>
<td>9</td>
<td>SYS _</td>
<td>At the "Set" display you enter one of the following numbers depending on the operation you want to perform.</td>
</tr>
<tr>
<td>1</td>
<td>SET _</td>
<td>You leave the system menu with 'Esc', which takes you back to selecting the settings.</td>
</tr>
<tr>
<td>Esc</td>
<td>SYS _</td>
<td>With another 'Esc' you return to controlling locomotives.</td>
</tr>
</tbody>
</table>

Perform desired operation

Following are the settings that you can change within the "SYS_1" menu.
13.2.1 Setting the function of the ‘Stop’ key: SET_1:
You can use this system setting to configure the operation of the ‘St’ Stop key to be either all locomotives stop or power off.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET:_</td>
<td>You reach this display by pressing ‘F’ followed by ‘9’ followed by ‘1’.</td>
</tr>
<tr>
<td>1</td>
<td>ST:STOP</td>
<td>By pressing the ‘1’ key, the current setting is shown. In STOP mode the locomotives are stopped, but the power to the track remains on (stop is the factory default.)</td>
</tr>
<tr>
<td>+</td>
<td>ST:OFF</td>
<td>With the ‘+’ (or ‘-’) key you can change the setting of the mode of ‘St’ key. In STOP mode the power to the track is turned off</td>
</tr>
<tr>
<td>Enter</td>
<td></td>
<td>‘Enter’ confirms the change, ‘Esc’ lets you leave the menu without changing the setting. Press the Esc key two additional times to exit the SYS menu and return to operations.</td>
</tr>
</tbody>
</table>

13.2.2 Language selection: SET_2
Currently, the LH100 allows you the choice between German and English (US) display text.

To configure this setting go to the SET menu:

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET:_</td>
<td>You reach this display by pressing ‘F’ followed by ‘9’ followed by ‘1’.</td>
</tr>
<tr>
<td>2</td>
<td>NATUS</td>
<td>The currently selected setting is shown: The example shows English as the current setting</td>
</tr>
<tr>
<td>+</td>
<td>NATU\^D</td>
<td>With ‘+’ or ‘-’ you can change the language in the display text.</td>
</tr>
<tr>
<td>Enter</td>
<td></td>
<td>‘Enter’ confirms the change, ‘Esc’ lets you leave the menu without changing the setting. Press the Esc key two additional times to exit the SYS menu and return to operations.</td>
</tr>
</tbody>
</table>

13.2.3 Contrast setting: SET_3:
For better readability, the LH100 has a contrast setting for the
display.

To configure this setting go to the SET menu:

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET: _</td>
<td>You reach this display by pressing 'F' followed by '9' followed by '1'.</td>
</tr>
<tr>
<td>3</td>
<td>CRT: 3</td>
<td>By pressing the '3' key, the currently selected contrast setting is shown.</td>
</tr>
<tr>
<td>+</td>
<td>CRT: 4</td>
<td>Using the '+' key you can increase the value.</td>
</tr>
<tr>
<td>-</td>
<td>CRT: 3</td>
<td>With the '-' key you lower it. While you are pressing the key, the corresponding arrow is shown in the display.</td>
</tr>
<tr>
<td></td>
<td>CRT: 2</td>
<td>Each keystroke immediately changes the contrast of the display, so that you instantly can evaluate the result of the change.</td>
</tr>
<tr>
<td>Enter</td>
<td>SET: _</td>
<td>‘Enter’ confirms the change, ‘Esc’ lets you leave the menu without changing the setting. Press the Esc key two additional times to exit the SYS menu and return to operations.</td>
</tr>
</tbody>
</table>

13.2.4 Mode of counting bits in the display: SET_4

The section “Setting and erasing bits” described how you can change individual bits in CVs. When doing so, the bits are counted from 1 to 8.

Some decoders from other manufacturers may start counting the bits with 0. To make it easier be able to get a display corresponding to this mode of counting, you can set the mode of counting for the bit display in SYS_4. When doing so, the bits are counted from 0 to 7.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET: _</td>
<td>You reach this display by pressing 'F' followed by '9' followed by '1'.</td>
</tr>
<tr>
<td>4</td>
<td>BIT: 1-8</td>
<td>The currently selected mode is shown. (Mode of counting 1-8 is factory default.)</td>
</tr>
<tr>
<td>+</td>
<td>BIT: 0-7</td>
<td>With the '+' (or '-') key you can change the setting of the mode of counting.</td>
</tr>
</tbody>
</table>
13.2.5 Erasing locomotive addresses from the command station stack: SET 5

As described previously, the LZ100 command station sends operation data repeatedly to all locomotive addresses contained in its internal command station stack.

If you fill the LZ100 locomotive stack you can erase locomotive addresses that are not needed for operation from the stack. This setting is user controllable.

You can only set this setting when using a command station version 3 or higher.

To be able to erase locomotive addresses from the command station stack, this system setting must be set to “CL ON”. It is recommended to reset to OFF.

With CL set to ON you can proceed to erase a locomotive address from the command station stack using the following procedure.

Press On the display you see Explanation

Enter | SET: _

‘Enter’ confirms the change, ‘Esc’ lets you leave the menu without changing the setting. Press the Esc key two additional times to exit the SYS menu and return to operations.

You are in controlling locomotive...
First erase the display by pressing the 'Cl' key.

Use ‘ESC’ to page through the locomotive stack until you find the address you want to erase.

With the ‘Cl’ key you start the erasing procedure. ‘Enter’ completes the erasure while ‘Esc’ aborts the operation.

With ‘Enter’ the address is now erased from the stack. The next address in the stack is shown for selection.

You can now continue to page through the stack until you find a locomotive you wish to operate.

With ‘Enter’ you can select an address to control, direction of travel and status of the functions will now be shown.

Use the erasing a locomotive address from the command station stack with care. If an address is erased, the command station will not send this data to the locomotive any longer. If power is interrupted, the locomotive could therefore lose the information. All command station data about the configuration of this locomotive will also be lost.
13.2.6 LH100 Reset to factory defaults: SET 6:

This Command is used to reset the LH100 to factory default setting.

- **A Reset operation resets the specific LH100 to its factory defaults but does not reset the system or any other device.**

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press SET</td>
<td>_</td>
<td>Press F9,1 for short cut to SET</td>
</tr>
<tr>
<td>Enter 6</td>
<td>RESET</td>
<td>The LH100 display alternates between "RESET" and "LH100"</td>
</tr>
<tr>
<td>Enter Enter</td>
<td>RESET</td>
<td>'Enter' confirms the desire to perform a reset. Press 'Enter' a second time to start a reset or 'Esc' to abort the operation.</td>
</tr>
<tr>
<td></td>
<td>blinks quickly</td>
<td>The reset operation starts with "Reset" on the LH100 display. After about 5 seconds the display goes through several displays as it resets.</td>
</tr>
<tr>
<td></td>
<td>blinks slowly</td>
<td>When the reset is completed the LH100 returns to locomotive operation.</td>
</tr>
</tbody>
</table>

- **A Reset operation causes the following settings to change:**
 - XpressNet address = 1
 - Function 'St'-key = STOP
 - Language = German
 - Contrast LCD = 2
 - Bit edit = 1...8
 - Stack size = 12
13.2.7 System Man/Auto Setting: Set 7

The LZV100 has two modes of operation. In manual mode (the default) the LZV100 activates the functions that were on when the LZV100 was last shut down. In automatic operation the speed and direction of all locomotives are also returned to what they were when the LZV100 was last powered down.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET.</td>
<td>You reach this display by pressing ‘F’ followed by ‘9’ followed by ‘1’.</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>MAN indicates that the system will start up in manual mode</td>
</tr>
<tr>
<td>+</td>
<td>AUTO</td>
<td>With the ‘+’ (or ‘-’) key you can change the setting of start mode to AUTO</td>
</tr>
<tr>
<td>Enter</td>
<td>SET.</td>
<td>‘Enter’ confirms the change. ‘Esc’ lets you leave the menu without changing the setting. Press the Esc key two additional times to exit the SYS menu and return to operations.</td>
</tr>
</tbody>
</table>

13.2.8 Set 8 Setting the stack size

The default stack size has 12 slots. The size can be set from 1 to 12.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET.</td>
<td>You reach this display by pressing ‘F’ followed by ‘9’ followed by ‘1’.</td>
</tr>
<tr>
<td>8</td>
<td>STCK: 12</td>
<td>STCK: 12 indicates the current stack size</td>
</tr>
<tr>
<td>-</td>
<td>STCK: 11</td>
<td>Decrease the stack size with ‘-‘.</td>
</tr>
<tr>
<td></td>
<td>STCK: 10</td>
<td>Decrease the stack size with ‘-‘.</td>
</tr>
<tr>
<td>+</td>
<td>STCK: 11</td>
<td>Increase the stack size with ‘+‘.</td>
</tr>
</tbody>
</table>
. 'Enter' confirms the change, 'Esc' lets you leave the menu without changing the setting. Press the Esc key two additional times to exit the SYS menu and return to operations.

13.3 SYS_7: Displaying the command station IDentifier
Using this function you can display the identification of the command station in use.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>The most recently selected menu is shown</td>
<td>This is the prompt to enter the setup that you want to read/change.</td>
</tr>
<tr>
<td>9</td>
<td>SYS _</td>
<td>The currently used command station is shown.</td>
</tr>
<tr>
<td>7</td>
<td>LZ:100</td>
<td>You leave the system menu with 'Esc', which takes you back to selecting the settings.</td>
</tr>
<tr>
<td>Esc</td>
<td>SYS _</td>
<td>With another 'Esc' you return to controlling locomotives.</td>
</tr>
</tbody>
</table>

This function is only available when using a command station LZ100 version 3 or higher.

13.4 SYS_8: Displaying the version number of the command station
Using this function you can display the version number of the command station in use.

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>The most recently selected menu is shown</td>
<td>This is the prompt to enter the setup that you want to read/change.</td>
</tr>
<tr>
<td>9</td>
<td>SYS _</td>
<td>The software version number of the command station in use is shown.</td>
</tr>
<tr>
<td>8</td>
<td>LZV: 36</td>
<td></td>
</tr>
</tbody>
</table>

You leave the system menu with ‘Esc’, which takes you back to selecting the settings.

With another ‘Esc’ you return to controlling locomotives.

13.5 SYS_9: Displaying the version number of LH100

Using this function you can display the version number of LH100

<table>
<thead>
<tr>
<th>Press</th>
<th>On the display you see</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>SYS_9</td>
<td>The most recently selected menu is shown</td>
</tr>
<tr>
<td>9</td>
<td>LH100.36</td>
<td>This is the prompt to enter the setup that you want to read/change.</td>
</tr>
<tr>
<td>Esc</td>
<td>SYS_9</td>
<td>The software version number of LH100 is shown.</td>
</tr>
<tr>
<td>Esc</td>
<td>'1.0003</td>
<td>You leave the system menu with ‘Esc’, which takes you back to selecting the settings.</td>
</tr>
</tbody>
</table>

With another ‘Esc’ you return to controlling locomotives.
14 Technical appendix

In this appendix we have collected information for you that may be of interest to the advanced user, or that can help you in case of problems.

14.1 Error messages on the display

The LH100 will display an error message on the display if you have done something that was not allowed at this time. To clear the display and either back up or resume operation, just press the \[\text{Cl} \] or \[\text{Esc} \] key.

Here is the list of possible error messages

<table>
<thead>
<tr>
<th>Error</th>
<th>happens during</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 01</td>
<td>PROG</td>
<td>When programming or reading a decoder, a power overload (short circuit) was detected. The decoder may not be correctly connected or may be defective.</td>
</tr>
<tr>
<td>ERR 02</td>
<td>PROG</td>
<td>When programming or reading a decoder, no decoder acknowledgement was detected. That could mean that the decoder is not correctly connected to the programming output on command station LZ100 (for example the digital locomotive may not be properly placed on the programming track) or the decoder is not functioning properly.</td>
</tr>
<tr>
<td>ERR 03</td>
<td>PROG</td>
<td>The command station did not answer programming request</td>
</tr>
<tr>
<td>ERR 24</td>
<td>DH/MU</td>
<td>The locomotive was not selected, no command to the locomotive was sent prior to setting up the MU/double header or the MU address is not a valid address for a MU.</td>
</tr>
<tr>
<td>ERR 25</td>
<td>DH/MU</td>
<td>One of the locomotives of the MU/double header is being operated on another Handheld.</td>
</tr>
<tr>
<td>ERR 26</td>
<td>DH/MU</td>
<td>One of the locomotives is already part of another MU/double header.</td>
</tr>
<tr>
<td>ERR 27</td>
<td>DH/MU</td>
<td>One of the two locomotives was not at throttle position 0. Locomotives must be stopped before you can combine them into a consist.</td>
</tr>
<tr>
<td>ERR 28</td>
<td>MU</td>
<td>The locomotive address is not in a MU</td>
</tr>
<tr>
<td>ERR 29</td>
<td>MU</td>
<td>There is no base MU address for this locomotive</td>
</tr>
<tr>
<td>ERR 30</td>
<td>Command station stack</td>
<td>It is not possible to erase locomotive from command station stack.</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ERR 31</td>
<td>Command station stack</td>
<td>The Command station stack is full. You must remove a locomotive address before you can add another address.</td>
</tr>
<tr>
<td>ERR 95</td>
<td>LH100 internal EEPROM error</td>
<td>(your LH100 must be sent in for service)</td>
</tr>
<tr>
<td>ERR 96</td>
<td>Your LH100 is not able to create a data connection over XpressNet. Check if the connection of your LH100 to XpressNet was correctly made. The XpressNet wires A and B may have been switched. The wrong XpressNet address is set. Please note that you have to set an address supported by the command station in use. Unplug the handheld and then plug it back in with the 'St' key pressed and the current addresses will be displayed and can be changed.</td>
<td></td>
</tr>
<tr>
<td>ERR 97</td>
<td>There is an error in the data processing in command station LZ100. All information about speed, direction and extra functions of the locomotives, as well as the status of turnouts and feedback encoders has been erased. The most frequent cause of this is an improper power supply to the LZ100. If this error appears repeatedly, the battery in LZ100 may be dead. This battery ensures that the data is stored even after the power to the command station is turned off. Please contact your model railroad dealer or Lenz Elektronik for replacement.</td>
<td></td>
</tr>
<tr>
<td>ERR 98</td>
<td>The command sent from the hand held controller to the command station is not present in its list of commands. The cause is generally a software version in the command station that does not understand this command. Typical example You are trying to assemble a multi-unit consist, but have connected your hand held controller LH100 to a command station version 2.0 which does not support this feature.</td>
<td></td>
</tr>
<tr>
<td>ERR 99</td>
<td>General system error. The hand held controller did not receive the expected reply to a question or command to the command station. The cause may be interference on the XpressNet. Please check if all wires are connected correctly. If this does not correct the problem it is possible that the command station or the hand held controller is defective. Please contact your model railroad dealer or Lenz Elektronik.</td>
<td></td>
</tr>
</tbody>
</table>
14.2 Bits and bytes - Conversion calculation help: Setting and erasing bits in a CV

Many CVs in the decoders do not use numeric values, but individual bits. If you want to program a decoder that does not support the bit-mode changing of CVs, you must program the decimal value corresponding to the bits that are to be set or erased. This leads to the question:

Which decimal value must be entered to set or erase which bits?

Each set bit represents a number, a value. Simply write out the value of all bits that are to be set in a CV below each other and add them up. In doing so, the following table applies:

<table>
<thead>
<tr>
<th>bit</th>
<th>value</th>
<th>bit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td></td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

Each bit that is set has a value of '1'. Each bit that is not set has the value '0'. To determine the correct decimal value, the following rule applies:

Add up all the values of all bits that are to be set.

Example:

Bit 1 and bit 5 (using 1-8 mode) are to be set, all other bits are to be erased. The values of both set bits are added together. The decimal value that you must program in the CV is ‘17’.

<table>
<thead>
<tr>
<th>bit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

Total: 17
14.3 Glossary

The most important terms in the Digital plus by Lenz® system:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>The number of a locomotive, comparable to a telephone number.</td>
</tr>
<tr>
<td>Acceleration and deceleration delay</td>
<td>Setting on a locomotive decoder. The acceleration delay determines how fast a locomotive reaches the speed belonging to a higher speed step, the deceleration delay determines how fast a locomotive reaches the speed connected with a lower speed step.</td>
</tr>
<tr>
<td>Configuration Variable (CV)</td>
<td>Address, starting voltage, acceleration rate and deceleration rate are examples of features which can be customized within the locomotive decoder. You will find detailed information on the features of Digital plus locomotive decoders in their respective manuals, available from your dealer or direct from Lenz Elektronik GmbH (send a stamped addressed C5 envelope).</td>
</tr>
<tr>
<td>DCC</td>
<td>Abbreviation for "Digital Command Control". This term has come to refer to the digital model railroad control system developed by Lenz and standardized by the NMRA.</td>
</tr>
<tr>
<td>Locomotive stack</td>
<td>"Index card box" that allows quick selection of a locomotive address.</td>
</tr>
<tr>
<td>Multi-unit consist</td>
<td>Controlling several locomotives at the same time with a common address.</td>
</tr>
<tr>
<td>NMRA</td>
<td>National Model Railroad Association, North American model railroaders organization</td>
</tr>
<tr>
<td>NMRA DCC Standards and RPs</td>
<td>A standard developed by the NMRA based on Lenz Digital plus, which determines the transfer of information to locomotive decoders and accessory decoders. These standards define the interchange of decoders produced by different manufacturers.</td>
</tr>
<tr>
<td>Packet format</td>
<td>The manner and method by which the information is transmitted from the command station to the decoder.</td>
</tr>
<tr>
<td>Settings in locomotive decoders</td>
<td>see CVs</td>
</tr>
<tr>
<td>Throttle positions</td>
<td>The area on the handheld between the minimum and maximum speed is divided into individual sections. We call these throttle positions.</td>
</tr>
<tr>
<td>Throttle-notches</td>
<td>Determines whether a locomotive is controlled with 14, 27, 28 or 128 speed step mode.</td>
</tr>
<tr>
<td>XpressNet</td>
<td>High speed data communication network for connecting DIGITAL plus input devices together</td>
</tr>
<tr>
<td>XpressNet - input devices</td>
<td>Devices that are used to control the model railroad. In the DIGITAL plus system these are: hand held controller, cab tower, interface, etc.</td>
</tr>
</tbody>
</table>

Lenz ELEKTRONIK GMBH
15 **Trouble shooting**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling locomotives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locomotive does not run</td>
<td>Wrong locomotive address in the display</td>
<td>Enter the correct locomotive address.</td>
</tr>
<tr>
<td></td>
<td>The system is set for 128 speed step operation and the decoder does not support this mode.</td>
<td>Change the system setting for this decoder to 14, 27 or 28 speed step operation depending on the capabilities of the decoder.</td>
</tr>
<tr>
<td></td>
<td>The locomotive address is shown in the display, pressing the operation keys gives no response.</td>
<td>Press the ‘Enter’ key.</td>
</tr>
<tr>
<td></td>
<td>You are in the address selection mode, shown by an “A” in the lower row.</td>
<td></td>
</tr>
<tr>
<td>Unable to change the speed step mode</td>
<td>The speed of the locomotive is not 0</td>
<td>Set the speed to 0 before setting the speed step mode.</td>
</tr>
<tr>
<td>Locomotive does not react when speed step mode 128 is selected</td>
<td>The locomotive decoder does not comprehend this mode (not an XF-type)</td>
<td>Select the 14, 27 or 28 speed step mode for the use of this decoder.</td>
</tr>
<tr>
<td>The locomotive lights (F0) turn on and off when the speed steps are increased</td>
<td>The locomotive decoder is set to 14 speed step mode, the corresponding address within the system is set to 28 speed step mode.</td>
<td>Change the speed step mode in the system to 14 speed steps or set the decoder to 28 speed steps (set bit 2 in CV29).</td>
</tr>
<tr>
<td>The locomotive lights (F0) do not respond when the 0 key is pressed.</td>
<td>The locomotive decoder is set to the 28 speed step mode, the corresponding address within the system is set to 14 speed step mode.</td>
<td>Change the speed step mode in the system to 28 speed steps or set the decoder to 14 speed steps (clear bit 2 in CV29).</td>
</tr>
<tr>
<td>The locomotive does not run with its basic address</td>
<td>The locomotive is possibly part of a multi-unit consist that is not know by the system.</td>
<td>Control the locomotive with the multi-unit consist address.</td>
</tr>
<tr>
<td>The locomotive address in the display flashes</td>
<td>The selected address is already called up on another hand held controller</td>
<td>Select another locomotive or take over the locomotive: Press one of the speed keys.</td>
</tr>
<tr>
<td>Emergency stop and off:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The display shows a flashing “STOP”</td>
<td>An emergency stop was initiated by another hand held controller</td>
<td>End the emergency stop by pressing the red ‘St’ key.</td>
</tr>
<tr>
<td>The display shows a flashing “OFF”</td>
<td>An emergency off was initiated by another hand held controller</td>
<td>End the emergency off by pressing the red ‘St’ key.</td>
</tr>
</tbody>
</table>
A power station has set down because of a short circuit or overload. Remove the cause of the short circuit. If the cause is an overload, consider dividing the layout into several power districts. Refer to “Power supply for a large model train layout” in the system operation manual.

Programming and reading out decoder settings on the programming track

When reading an address in menu DIR, the address is preceded by a large “M”. In addition to its own address, the locomotive decoder also has a multi-unit address stored in CV19. An “M” means that this is the locomotive’s MU address.

You can only control a locomotive in this condition with the MU address. When you see “m” and the locomotive address, press the ‘-’ key and the MU address will be displayed. When you program a new address, the MU address in CV19 is erased.
16 North American Warranty

Lenz GmbH does everything it can do to ensure that its products are free from defects and will operate for the life of your model railroad equipment. From time to time even the best-engineered products fail either due to a faulty part or from accidental mistakes in installation. To protect your investment in Digital Plus products, Lenz GmbH offers a very aggressive 10 year Limited Warranty.

This warranty is not valid if the user has altered, intentionally misused the Digital Plus product, or removed the product’s protection, for example the heat shrink from decoders and other devices. In this case a service charge will be applied for all repairs or replacements. Should the user desire to alter a Digital Plus Product, they should contact Lenz GmbH for prior authorization.

Year One: A full repair or replacement will be provided to the original purchaser for any item that has failed due to manufacturer defects or failures caused by accidental user installation problems. Should the item no longer be produced and the item is not repairable, a similar item will be substituted at the manufacturers discretion. The user must pay for shipping to an authorized Lenz GmbH warranty center.

Year 2 and 3: A full replacement for any item will be provided that has failed due to manufacturer defects. A minimal service charge for shipping and handling costs will be imposed. Should the item no longer be produced and the item is not repairable, a similar item will be substituted at the manufacturer’s discretion.

Year 4-10: A service charge to include repair, shipping and handling will be placed on each item that has failed due to manufacturer defects and/or accidental user installation problems. Should the item no longer be produced and the item is not repairable, a similar item will be substituted at the manufacturers discretion.

A return authorization number is necessary for warranty service. Please contact a Lenz Service Center to receive this number and give the required information.

Warning: This product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm.

This equipment complies with Part 15 of FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Please save this manual for future reference!

© 2008 Lenz GmbH, All Rights Reserved